

Objectives

- To identify plant structures and functions.
- To describe the structure of plant cells.
- To explain the process of reproduction in plants.

Main Menu

Plant Structures Roots Stems Flowers Leaves Fruit Seeds

Anatomy of Plants Plant Cell Biology

4

Plants

- Plants
 - are multicellular organisms
 - are incapable of movement
 - produce food through photosynthesis

Animals

- Animals
 - are multicellular organisms
 - are capable of movement, on their own
 - cannot produce their own "food"
 - Ingest food from surroundings

Cell Types

- Include:
 - Prokaryotic
 - pro = before; karyon = nucleus
 - found in bacteria
 - do not contain a nuclei
 - lack membrane-bound organelles

Fun Fact: Since viruses are acellular – they contain no organelles and cannot grow and divide – they are considered neither prokaryotic or eukaryotic.

Cell Types

- Include:
 - Eukaryotic
 - eu = good; karyon = nucleus
 - found in plants and animals
 - contain a nucleus
 - contain membrane-bound organelles

Cell Membrane

- Surrounds the cell as a thin layer of protein (about eight-millionths of a millimeter thick)
- Can be found inside the cell wall
- Allows some substances to pass into the cell while blocking others

Cell Membrane

- Is also known as the plasma membrane
- Is involved in cellulose production for the assembly of cell walls
 Is involved in cellulose production for Plasma Membrane Structure
- Is composed of highly structured proteins and phospho-lipids

CEV

Cell Wall

- Are found only in plants
- Surrounds the cell
- Provides structural support and protection
- Bonds with other cell walls to create plant structure

Chloroplast

Is an elongated organelle containing chlorophyll
Converts light and carbon dioxide to

usable energy

Organelle: specialized part of a cell which has a specific function

Cytoplasm

Is a gel-like material outside the nucleus, but inside cell membrane
Contains the cytoskeleton, cytosol

and the organelles

Fun Fact: substance of a living cell, including the cytoplasm and nucleus, is known as the protoplasm.

Golgi Apparatus

- Is a flat, layered organelle (dictyosomes) which resembles a stack of pancakes
- Is located near the nucleus
- Packages proteins and carbohydrates for export from the cell
- Modifies proteins and lipids before distributing them

Mitochondria

- Is the powerhouse of the cell
- Are spherical, rod-shaped organelles
- Have a double membrane
- Converts energy stored in glucose to ATP for the cell (Respiration)

ATP: adenosine triphosphate, the molecule which provides the energy in the cells of all living things

Nucleus

- Controls functions of the cell
- Contains DNA in chromosomes
- Is surrounded by the nuclear membrane

Chromosome: structure of nucleic acids and proteins which carries genetic information in the form of genes

Ribosomes

- Are small organelles found in large numbers in the cytoplasm
- Create proteins from amino acids
- Can only be seen with an electron microscope
- Composed of two subunits containing RNA and proteins

Rough Endoplasmic Reticulum

- Is located in the cytoplasm
- Is covered with ribosomes which give it a rough appearance
- Transports materials through the cell, secretes, stores and

creates proteins

Smooth Endoplasmic Reticulum

- Is located in the cytoplasm
- Transports materials through the cell
- Contains enzymes
- Produces and digests lipids and membrane proteins

Enzymes: proteins which assist chemical reactions in living cells

Vacuole

- Is surrounded by a membrane
- Is filled with fluid
- Takes up most of the cell
- Maintains the shape of the cell
- Is the "cell trash can"

Photosynthesis

- Is the process of converting light energy to chemical energy
- Takes place in the chloroplasts using chlorophyll

Anatomy of Plants

Plant Structures

Plant Structures: Roots

Roots

- Are usually underground
- Anchor plants in soil
- Absorb water and nutrients
- Can store food for plant

Root Tissues

- Include:
 - epidermis
 - cortex
 - vascular cylinder or stele

Root Systems

- Includes:
 - two major types:
 - taproot system
 - fibrous root system

Taproot System

Is found in many dicotyledons such as carrots and beets
Is derived directly from the first root emerging from the seed

Dicotyledons: flowering plants with two seed cotyledons

Taproot System

 Has one prominent root known as the taproot or primary root

Fibrous Root System

- Are found in most monocots
- Consists of an extensive mass of smaller, widely spread roots

Monocots: flowering plants with only one seed cotyledon

Root Types

- Include:
 - taproots
 - lateral roots
 - adventitious roots
 - fibrous roots

Taproot

- Characteristics are:
 - Single, dominant roots
 - Grow directly downward
 - Sprout other fibrous roots
 - Can be modified for food and water storage and uptake

Lateral Roots

- Extend horizontally from the taproot
- Extract nutrients and water from the soil

Adventitious Roots

- Form from shoot tissues
- Arise in stems and leaves
- Are used when cloning plants from cuttings

Fibrous Roots

- Are thin, slender roots
- Collect water and nutrients close to the soil surface
 Sprout from primary roots

systems.

Grasses are considered to have fibrous root

Plant Structures: Stems

Stems

- Support the leaves, flowers and fruits of plants
- Conduct movement of water and nutrients to and from the roots and leaves
- Store water

Stem Tissues

- Include:
 epidermis
 - cortex
 - xylem
 - phloem
 - cambium

Stem Types

- Include:
 - aerial
 - grow above ground
 - subterranean
 - grow below ground
 - acaulescent
 - no obvious stem above or below ground

Xylem

- Transports water from the roots up the plant
- Provides structure and support in the stem

Fun Fact: In trees, new xylem tissues are produced each year. As these new tissues are added, older xylem tissues die and create the "rings" that can be seen in tree trunks.

Phloem

- Transports sugars and other molecules made during photosynthesis
- Is always alive

Plant Structures: Flowers

Flowers

- Are organs for sexual reproduction
- Produce gametes
- Play a key role in pollination

Gamete: mature male or female sex cell which is able to unite with another of the opposite sex in sexual reproduction

- Include:
 - peduncle
 - flower stalk
 - receptacle
 - part of flower stalk bearing floral organs
 - sepal

 leaf structures at flower base, protects young buds, all together known as calyx

- Include:
 - petal
 - located in and above the sepals, attracts pollinators, all together known as corolla
 - sta<mark>men</mark>

- male part of the flower, makes pollen grains
- filament
 - stalk of the stamen, contains the anther

- Include:
 - anther
 - bears pollen
 - pollen
 - grains containing the male sex cells
 - pistil
 - female part of the flower

- Include:
 - stigma
 - sticky top of pistil, receptive surface for pollen grains
 - style
 - stalk of the pistil, where pollen tube grows

- Include:
 - ovary
 - base of the pistil, matures to become fruit
 - ovule
 - located in the ovary, carries female sex cells

Flower Types

- Include:
 - complete
 - has stamen, pistil, petals and sepals
 - incomplete
 - one part missing

Flower Types

- Include:
 - perfect
 - both stamen and pistil are present and functioning
 - imperfect
 - stamen or pistil is missing

Main Menu

Plant Structures: Leaves

Leaves

Are the major site of food production for the plant (chloroplasts)
Contain structures which convert sunlight to chemical energy (photosynthesis)

Leaf Tissues

Include:

 epidermis
 mesophyll
 veins

Leaf Parts

Leaf Parts

- Include:
 - midrib
 - main, central vein of a
 leaf
 - petiole
 - leaf stalk which attaches the leaf to the plant
 - stem
 - main support of the plant

Leaf Parts

- Include:
 - stipule
 - small, leaf-like appendages at the base of the petiole
 - vein
 - transports water, minerals and food energy throughout the plant

Leaf Types

- Include:
 - simple
 - not divided into separate units
 - compound
 - leaflets arranged on both sides of an axis

Leaf Vein Patterns

- Include:
 - parallel
 - several large veins run alongside each other from the base of the blade to the tip (monocots)
 - palmate
 - several main veins of about equal size, all of which extend from a common point at the base of the leaf (dicots)

Leaf Vein Patterns

- Include:
 - pinnate
 - one large, central vein, the midrib, with other large veins branching from the sides

Leaf Vein Patterns

Leaf Arrangements

- Include:
 - alternate
 - one leaf produced at each node
 - opposite
 - leaves in pairs at nodes
 - whorled
 - three or more leaves per node

Leaf Arrangements

Plant Structures: Fruit

Fruit

- Evolves from the maturing ovary after pollination and fertilization
 May be either fleshy or dry in
 - appearance
- Plants produce fruit to protect and disseminate seeds
- Contains one or more seeds

Fruit Types

- Include:
 - simple
 - formed from one ovary aggregate
 - formed from a single flower with many ovaries
 - multiple
 - developed from a fusion of separate flowers on a single structure

Plant Structures: Seeds

Seeds

- Primary function is reproduction
- Are used in the process of plant propagation
 - plant propagation is the creation of new plants through cuttings, seed, bulbs or other plant parts
- Serve as a dispersal unit for many plants
 - dispersal is the transportation of seeds away from the parent plant in order to create new plants

Seeds

- Contain three parts:
 - seed coat
 - protects the embryo
 - cotyledon
 - temporary food supply, also known as seed leaf
 - embryo
 - an undeveloped plant inside a seed

68

Seeds

Monocots

- Are embryos with a single cotyledon
- Contain flower parts in multiples of three
- Have adventitious roots
- Store nutrients in endosperm

Dicots

- Are embryos with two cotyledons
- Contain flower parts in multiples of four or five
- Have roots which form from the radical

Vieni

Resources

- Plant Parts. The Great Plant Escape, Urban Programs Resource Network, University of Illinois Extension. Retrieved from http://urbanext.illinois.edu/gpe/case1/c 1facts2e.html
- (2008). NY/NJ Trails + Rutgers Invasive Plant Monitoring Project. Rutgers School of Environmental and Biological Sciences. Rutgers, The State University of New Jersey. Retrieved from http://trails.rutgers.edu/identify.html
- (2003) Plant Structure and Function. Andromeda Botanic Gardens. The University of the West Indies. Retrieved from http://andromeda.cavehill.uwi.edu/flower_structure _and_function.htm
- Stern., Bidlack & Jansky, (2008). Introductory plant biology. (Eleventh Edition ed.). McGraw Hill.

Acknowledgements

© MMXIV

CEV Multimedia, Ltd.

Production Coordinators Katelyn Perry

Graphic Designer Melody Rowell

Technical Writer Jessica Odom Collaborators

Dick Auld, Ph.D. Texas Tech University

Graduate Research Assistant Texas Tech University

V.P. of Brand Management Clayton Franklin **Executive Producer** Gordon W. Davis, Ph.D.

